
Parallelware Analyzer NPB Quickstart

What is Parallelware Analyzer?

Parallelware Analyzer is the first static code analyzer specializing in performance. The
Parallelware Artificial Intelligence (AI) engine leverages the expertise of the senior performance
optimization engineers who have been doing it manually for the last decades. It provides
actionable insights through performance optimization reports that help ensure best practices to
speedup the code through parallel computing in modern heterogeneous multicore chips.

Current version of Parallelware Analyzer consists of the following command-line tools:
● pwreport: provides a high-level overview of your code: summary of parallelized regions,

defects, recommendations and opportunities.
● pwcheck: detects defects related to parallelism such as race-conditions and issues

recommendations on best-practices.
● pwloops: identifies opportunities for parallelism and provides insight into the parallel

properties of loops found in the code.
● pwdirectives: guided generation of parallel code for multicore CPUs and GPUs, with

OpenMP and OpenACC, using multithreading, offloading and tasking.

Resources:
- NAS Parallel Benchmarks (download C version)
- Parallelware Analyzer webpage (link)

Where to start?

Parallelware Analyzer tools have been designed to cover the different stages of the parallel
development workflow from looking for opportunities for parallelism to implementing them. The
pwreport tool normally serves as a good entry point since it provides the higher-level reporting,
including actionable insights, code coverage metrics, opportunities for parallelization and defects
found in your code that should be fixed right away. It also offers suggestions on which tools to
invoke next.

Useful options common to all tools

All tools accept as input a loop, function, source code file or directory. To specify a function or loop
you use the <file>:<function> and <file>:<line> syntax respectively. Using --exclude you can
provide a list of loops, functions, source code files or directories to exclude. Other useful common
options are:

--help: print usage information.
--brief: all analyses support outputting a more compact version.

https://www.appentra.com/products/parallelware-analyzer/
https://www.appentra.com/wp-content/uploads/2020/03/SNU_NPB-1.0.3.tar.gz
https://www.appentra.com/products/parallelware-analyzer

--show-progress: reports analysis progress per file, which can be useful when analyzing folders
containing many source files since it can take some time.
--show-failures: prints error messages for files that could not be analyzed. This is useful to detect
missing required compiler flags (such as include paths when header file errors are reported).
--include-tags and --exclude-tags: allow to filter the different available defects, recommendations,
remarks and opportunities based on their associated tags (which you can list by invoking pwreport
--list-all).
--lang C|C++|Fortran: allows narrowing the analysis to source files of the specified programming
language.
--level <number>: select the desired level of detail for the report (1 is the minimum and the output
will become larger as the number is increased).
--csv and --json: provides the output in CSV and JSON format, respectively.

Quickstart with NAS Parallel Benchmarks

To get started with Parallelware Analyzer we will use the SNU NPB Suite (direct download here),
which is a set of the NAS Parallel Benchmarks (NPB) in C with four implementations: serial version
(NPB-SER-C), OpenMP version (NPB-OMP-C), OpenCL version (NPB-OCL) and OpenCL for
multiple devices version (NPB-OCL-MD). Specifically, we will work with the serial implementation:
NPB-SER-C.

1. Download Parallelware Analyzer and its license file, then uncompress and move inside the
license file with name pwa.lic:

$ tar xvfz pwanalyzer-0.19.1-linux-x86_64.tar.gz
$ mv pwanalyzer-eap.lic pwanalyzer-0.19.0-linux-x86_64.tar.gz/pwa.lic

2. Download and uncompress the NPB suite: SNU_NPB-1.0.3.tar.gz

$ tar xvfz SNU_NPB-1.0.3.tar.gz

3. Move into the serial implementation:

$ cd SNU_NPB-1.0.3/NPB3.3-SER-C

4. Choose a benchmark and build it, for instance for BT:

$ make bt

Note that Parallelware Analyzer only analyzes source code and does not require the
execution of the benchmark. Invoking make is needed to create the executables of the
NPB benchmarks and because a npbparams.h file is generated for each benchmark upon
building.

5. Execute the selected benchmark to measure the performance of the serial version, for

instance for BT:

2

http://aces.snu.ac.kr/software/snu-npb/
https://www.appentra.com/wp-content/uploads/2020/03/SNU_NPB-1.0.3.tar.gz
https://www.nas.nasa.gov/publications/npb.html
https://www.appentra.com/wp-content/uploads/2020/03/SNU_NPB-1.0.3.tar.gz

$ bin/bt.W.x
...
Time in seconds = 2.20
...
Verification = SUCCESSFUL
...

The W in the binary name represents the NPB workload class, in this case a workstation
size. Look for the outputted correctness and runtime information.

6. Rebuild with profile information. For gcc, this is achieved through the -pg flag. Given how

NPB build is organized, you need to edit config/make.def to add -pg to both the CFLAGS and
CLINKFLAGS (lines 113 and 119, respectively). Once you have done so, rebuild the
benchmark:

$ vim config/make.def
$ make clean bt

7. Running the benchmark again, will produce a gmon.out file containing the profiling

information. You can then use gprof to find hotspots:

$ bin/bt.W.x
$ gprof bin/bt.W.x
...
33.80 0.73 0.73 6712596 0.00 0.00 binvcrhs
16.20 1.08 0.35 201 1.74 3.68 y_solve
13.89 1.38 0.30 6712596 0.00 0.00 matmul_sub
10.65 1.61 0.23 201 1.14 3.08 x_solve
10.19 1.83 0.22 202 1.09 1.09 compute_rhs
...

Now you have information about which functions consume most of the execution time.

Although in this example we have used gcc and gprof, feel free to experiment with other
profilers: there is no limitation by Parallelware Analyzer.

8. Run pwreport to get a first overview of the code:

$ pwreport BT/*.c
pwreport: error: 'BT/add.c' is invalid: a function or loop must be

provided using the syntax <file>:<function> or <file>:<line>[:<col>]
respectively

...

An error is reported because neither a loop nor a function were provided. By default,
pwreport is designed to focus on a hotspot. However, as hinted in the last suggestion on
the bottom, you can override this behavior and analyze entire files or directories using
--summary.

3

9. Re-run with the --summary flag:

$ pwreport BT/*.c --summary
pwreport: error: failed to analyze 'BT/add.c'

In file included from BT/add.c:34:
BT/header.h:53:10: fatal error: 'type.h' file not found
#include "type.h"

^~~~~~~~
1 error generated
...

Notice that multiple errors are reported due to missing header files.

10. Add NPB’s common directory to the include path. Compiler flags are passed to all

Parallelware Analyzer tools after all other arguments and separated by “--”, following the
GCC/Clang syntax:

$ pwreport BT/*.c --summary -- -I common
...
METRICS SUMMARY
Total defects: 0
Total recommendations: 345
Total remarks: 1717
Total opportunities: 136

...

Notice the number of recommendations and opportunities reported. The goal is to
reduce them by applying best practices recommendations to your code and by
implementing parallel versions of the opportunities.

11. Run pwloops to get information about opportunities for parallelization:

$ pwloops BT/*.c -- -I common
…
Loop Analyzable Compute patterns Opportunity Auto-Parallelizable Parallelized
------------------- ---------- ---------------- -------------- ------------------- ------------
BT/add.c
|- add:45:3 x forall multi, offload x
| `- add:46:5 x forall
| `- add:47:7 x forall
| `- add:48:9 x forall simd x
…

12. You can also use pwloops to visualize the source code annotated with opportunities. You

can do so filtering by function to narrow the output to the relevant functions:

4

$ pwloops BT/exact_rhs.c:exact_rhs -- -I common
...
Line Opp BT/exact_rhs.c
---- --- ---
39 void exact_rhs()
40 {
41 double dtemp[5], xi, eta, zeta, dtpp;
42 int m, i, j, k, ip1, im1, jp1, jm1, km1, kp1;
43
44 //---
45 // initialize
46 //---
47 P for (k = 0; k <= grid_points[2]-1; k++) {
48 for (j = 0; j <= grid_points[1]-1; j++) {
49 for (i = 0; i <= grid_points[0]-1; i++) {
50 V for (m = 0; m < 5; m++) {
51 forcing[k][j][i][m] = 0.0;
52 }
53 }
54 }
55 }

...

Filtering by function comes very handy to focus on the hotspots detected through
profiling. Remember that gprof reports which functions consume most of the runtime.

13. Once you have selected a loop, parallelize it using the Patterns information from pwloops.

For instance, you can typically parallelize a forall pattern using OpenMP multithreaded
execution by annotating the loop with the directive: #pragma omp parallel for

In order to enforce parallel programming best practices, you can also take advantage of

pwdirectives to insert the multithreading directives in the loop to be parallelized using the
<file>:<function>:<line>:<column> syntax:

$ pwdirectives --in-place BT/exact_rhs.c:47:3 -- -I common
Compiler flags: -I common

Results for file 'BT/exact_rhs.c':
Successfully parallelized loop at 'BT/exact_rhs.c:exact_rhs:47:3'

[using multi-threading]:
47:3: [INFO] Parallel forall: variable 'forcing'
47:3: [INFO] Loop parallelized with multithreading using

OpenMP directive 'for'
47:3: [INFO] Parallel region defined by OpenMP directive

'parallel'
Successfully updated BT/exact_rhs.c

$ sed -n 47,51p BT/exact_rhs.c
#pragma omp parallel default(none) shared(forcing, grid_points)

private(i, j, k, m)
{
#pragma omp for private(i, j, m) schedule(auto)
for (k = 0; k <= grid_points[2]-1; k++) {

for (j = 0; j <= grid_points[1]-1; j++) {

/exact_rhs.c:exact_rhs:47:3

5

14. Recompile with OpenMP enabled and re-run the selected benchmark. To enable OpenMP,
edit config/make.def just like you did in step 6, but this time adding the -fopenmp flag.

$ vim config/make.def
$ make clean bt
$ bin/bt.W.x

Fill-in a new row in the record sheet for this iteration:

- Write down the number of defects, opportunities, recommendations, data races
and data race frees from pwreport.

- Verify the correctness of the parallel version.
- Verify the new runtime of the parallel version and if it is a speedup or a

slowdown.

15. Repeat steps 10 to 15. Verify that no defects have been introduced during the

parallelization of the code (such as race conditions) by looking at the METRICS SUMMARY
section outputted by pwreport.

Using a configuration file

All previous invocations of Parallelware Analyzer command-line tools required to pass the same
flags once and again (ie. you wrote “-- -I common” at the end of each invocation). You can use a
configuration file to store the required compiler flags and re-use it for all your analyses:

16. Create a config.json file and add the following contents:

$ vim config.json
{

"version": 2,
"analyses": [

{
"match": "*.c",
"command": "gcc %f -I common"

}
]

}

This configuration tells Parallelware Analyzer that for files matching the *.c pattern (ie.
C source files) it should use the gcc %f -I common command. This command starts with
gcc to specify that what follows are flags using the GCC/Clang syntax; then, it comes %f
which represents the matched source file. Lastly, the command specifies the already
known -I common flag that we wish to apply to all C source files. Parallelware Analyzer
will parse the gcc command to extract the compiler flags.

17. Try executing any of the previous Parallelware Analyzer invocations using the

configuration file instead of the compiler flags:

$ pwreport BT/*.c --summary --config config.json

6

Parallelware Analyzer supports using a configuration file to address this and more complex
scenarios such as integration with CMake or declaring dependencies between files.

● Integration with CMake can be accomplished by specifying a compile_commands.json

compilation database file in your configuration file. Parallelware Analyzer will look for
compilation commands for files to be analyzed in order to gather all the relevant flags.

● Declaring file dependencies instructs Parallelware Analyzer to analyze related source files

together. This may be essential to discover new opportunities for parallelization in cases
where loops invoke functions whose definition is located in a different source file: in most
cases the function body must also be analyzed to determine whether the loop can be
parallelized or not.

Refer to the docs/ConfigurationFile.md file for exhaustive documentation and to the
examples/config/ folder to find configuration file examples.

Update: this post has been updated on September 7th, 2021 so that the different shown tool
outputs match those of the latest version of Parallelware Analyzer.

7

Record sheet

pwreport invocation Benchmark binary invocation
(eg. bin/bt.W.x)

Ste
p

Defects Recommen
dations

Opportunities Data races Data race
free

Runtime Speedup Correctnes
s(y/n)

1 n/a y

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

8

